

108. Mitgliederversammlung der SAV

1.September 2017

Guido Grützner



- Capital allocation for portfolios
- Capital allocation on risk factors
- Case study

#### Why capital allocation?



- "Just" calculating solvency capital is not enough!
  - Capital requirement needs to be understood and integrated into business and strategy.
- Capital allocation splits the total required/target capital C into amounts  $C_1, \dots, C_n$  with

$$C = \sum_{i=1}^{n} C_i$$

where each  $C_i$  is an amount of capital related to a risk factor or part of the business.

- Capital allocation is a tool to answer important questions about your business:
  - What are your greatest risks?
  - What are the sources of diversification?
  - Are you adequately rewarded for the risks you take?
  - How can you optimise risk-return?
- Under Solvency II it is required as part of the use test and the ORSA

### Capital allocation for portfolios of risk



- The capital allocation for a portfolio of risks is the most important special case of allocation.
- Portfolio of risks means the total P&L or loss function is a sum:

$$TOT = \sum_{i=1}^{n} X_i$$

$$TOT: Total P&L or total loss$$

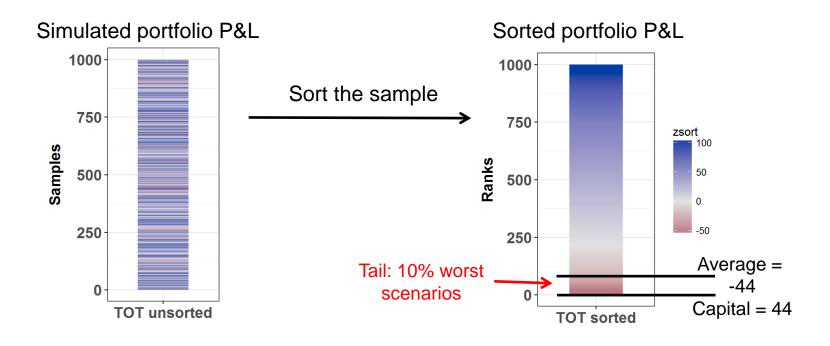
$$X_i: P&L or Loss of portfolio components, risk factors$$

- **Euler method**: Method to allocate capital  $C_i$  to the components  $X_i$  of a portfolio of risks
  - Has very nice properties
  - Easy to calculate (for many risk measures)
  - Intuitive interpretation (for many risk measures)
- There are many examples of portfolio of risks where the Euler method is used in practice
  - Allocation to financial instruments in an investment portfolio
  - Allocation to insurance contracts in an insurance portfolio
  - Allocation to lines of business
  - Allocation to legal entities of a group

#### **Example: Expected Shortfall**



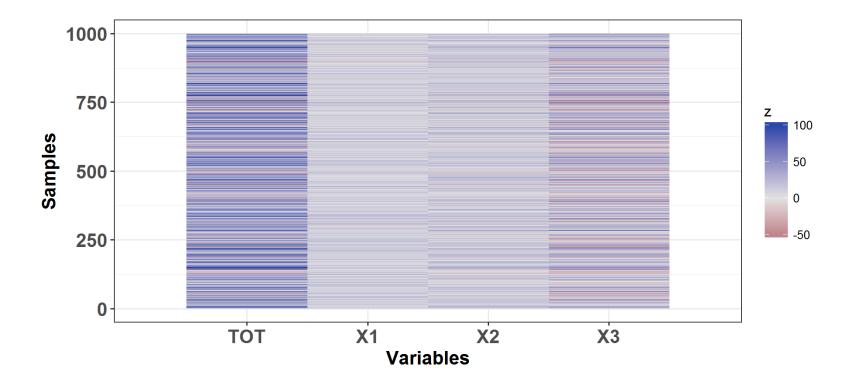
- The risk measure Expected Shortfall allows a particularly nice Euler allocation.
- Expected Shortfall is estimated as average of worst outcomes of a simulation. In the figure at 10% level:  $C = -E[TOT | TOT < q_{10\%}]$



#### **Example: Joint simulation**



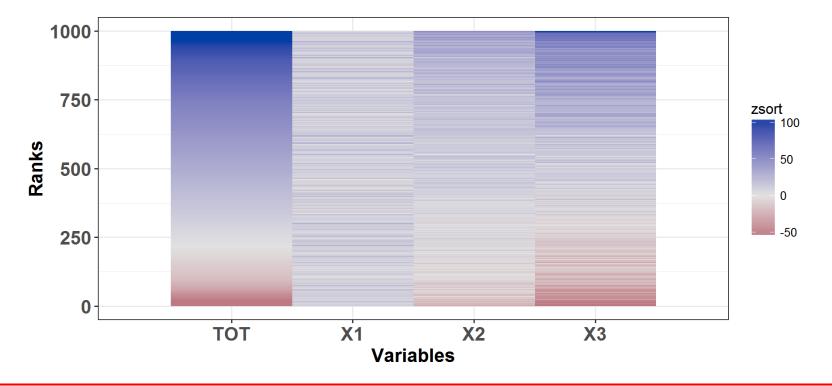
- Example: A portfolio of three risks with  $TOT = X_1 + X_2 + X_3$ 
  - Joint simulation with N = 1000 of the P&L of the four variables.
  - Each row is an independent sample.
  - Each column a variable.



#### **Example: Sorted outcomes**

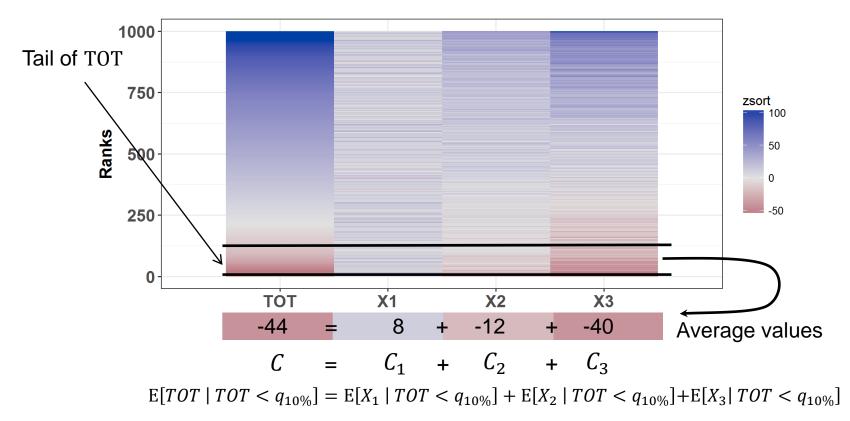


- Sort rows according to TOT the total P&L: Good outcomes of TOT on top bad ones at the bottom.
  - X3 and (to a lesser extent) also X2 are bad if TOT is bad.
  - X1 seems to be undetermined.



#### Example: Allocation of Expected Shortfall

The Euler allocation for X1, X2 and X3 is their tail average according to the sort order of TOT. Total capital: C = 44 allocated capital:  $C_1 = -8$   $C_2 = 12$   $C_3 = 40$ 



Euler allocation always sums up to total capital!

#### Euler allocation as a useful tool

Quant Akt

- The Euler allocations has nice properties:
  - Allocated capital sums up to total capital
  - Allocation can be computed from simulations
  - Intuitive interpretation
- Euler is the only method which provides all the answers:
  - Largest risk?

**Diversification?** 

- Measure reward?

- $\Rightarrow$  Risk factor with largest allocated capital
- $\Rightarrow$  Allocated capital smaller than stand-alone capital
  - ⇒ Return On Risk Adjusted Capital (RORAC) Expected return (total or component) divided by (total or allocated) capital.
  - ⇒ RORAC compatibility: Increasing exposure to component with largest component-RORAC will increase RORAC of total portfolio

- Optimisation?



- Capital allocation for portfolios
- Capital allocation on risk factors
- Case study

#### BUT: Not all risks come as a portfolio!

- Portfolios of risks are common but there are many examples where risk factors combine in a non-linear fashion.
- X (insurance) cash flow Discounted or FX cash flows  $f(X,Y) = X \cdot Y$ Y discount factor or FX rate
- Excess of loss treaty with multiple perils

 $f(X, Y) = \max(X + Y - c, 0)$  X, Y perils e.g. earthquake, hurricane

c deductible

Example: Financial return guarantee on a mixed investment portfolio

X, Y asset classes, c guarantee/strike level  $f(X,Y) = \max(X + Y - c, 0)$ 

- How does capital allocation actually work in those cases?
- In these cases there is currently no "gold-standard" for allocation comparable to Euler allocation.



#### What is the problem?



- Immediately obvious algebraic problem:  $E[TOT | TOT < q_{10\%}] = E[X_1 | TOT < q_{10\%}] + E[X_2 | TOT < q_{10\%}] + E[X_3 | TOT < q_{10\%}]$ works only for  $TOT = X_1 + X_2 + X_3$ .
- Deeper conceptual problem:
  - The marginal principle  $C[X_i] = C[TOT] C[TOT X_i]$  breaks down because  $TOT X_i$  has no meaning for non-additive risk factors.
  - Euler principle is infinitesimal version of the marginal principle
- From a business perspective:
  - Euler allocation is closely related to what you can actually DO with a portfolio: Increase/Decrease the exposures to the single risk factors.
  - When discounting a cash-flow you can't increase/decrease the exposure to the discount factor.
  - If you can't change the exposure RORAC compatibility is pretty useless

-

#### Split by risk category

Capital per risk category is routinely reported.

- Works only for event type risk factors

Has poor statistical qualities

- But risk factors such as interest (or FX) rates enter into all lines of business and investments. How are they carved out from the rest?
- What does "diversification" mean?
- Can this serve as a basis for capital allocation?

## Generic example of a split by risk category



# What can be done? Loss allocation according to the Cat model vendors: Allocate loss in a simulation year to

Ignores interaction of events (for example: Aggregate covers)

the risk factor (event) which causes the bond/insurance contract to trigger.

Quant Akt



- Split by freezing the margins might be the most popular method to calculate capital per risk factor. Example: Split capital for a P&L model f(X,Y) with risk factors insurance risk (X) and market risk (Y) into capital for insurance and market risk.
- Step 1: Define "pure insurance risk" by replacing all stochastic inputs *Y* for market risk with a constant value  $y_0$ :  $INS(X) = f(X, y_0)$
- Step 2: Define "pure market risk" by replacing X with the constant value  $x_0$ :

$$MKT(Y) = f(x_0, Y)$$

- Step 3: Run the model three times to calculate the "stand-alone" capitals for *INS* and *MKT* and the total risk *TOT*. Capital for insurance risk  $C_{INS} = C[INS(X)] = C[f(X, y_0)]$ 
  - Capital for market risk  $C_{MKT} = C[MKT(Y)] = C[f(x_0, Y)]$
  - Total capital  $C = C_{TOT} = C[f(X, Y)]$
- Step 4: Add up and call the difference "diversification"

$$C_{TOT} = C_{INS} + C_{MKT}$$
 – Diversification

Split by freezing-the-margins seems to be quite intuitive but has three problems!



#### The problems with freezing-the-margins

First problem: The "pure" models do not add up!

 $f(X,Y) \neq f(x_0,Y) + f(X,y_0)$ 

Solution: A residual term needs to be included in the allocation

 $f(X,Y) = f(x_0,Y) + f(X,y_0) + RES$  Split of  $C_{TOT}$  into  $C_{INS}$ ,  $C_{MKT}$ ,  $C_{RES}$ 

- Second problem: The allocated capitals do not add up to the total capital.
- Solution: Use Euler allocation instead of stand-alone capital.
- Third problem: What do the terms  $INS(X) = f(X, y_0)$  and  $MKT(Y) = f(x_0, Y)$  represent in terms of business or in terms of modelling?
  - The terms have no consistent interpretation in terms of business
  - Lack of interpretation makes the choice of constants  $x_0$ ,  $y_0$  and the capital split arbitrary.
  - Simply replacing a random variable with a constant is not a consistent stochastic approach

### A general framework



Step 1: Split the total into a sum of components each depending on one single risk factor only – the "pure risk" functions – and the residual.

f(X,Y) = INS(X) + MKT(Y) + RES(X,Y)

Step 2: Use Euler allocation to allocate capital onto each component.

$$f(X,Y) = INS(X) + MKT(Y) + RES(X,Y)$$
  
Euler allocation  $\downarrow \qquad \downarrow \qquad \downarrow$   
$$C = C_{INS} + C_{MKT} + C_{RES}$$

- The hard problem is the split into a sum, i.e. Step 1!
- The split should be based on principles
  - Principle 1: A split should be based on real world business considerations
  - Principle 2: A split should be mathematically sound and consistent

### Split by optimal hedging



- The mathematical idea of split by optimal hedging is: Approximation.
  - Choose the pure models such that the residual term *RES* is as small as possible:

Find h and g such that  $f(X,Y) - h(X) - g(Y) \rightarrow \text{minimal}$ 

- The business idea behind split by optimal hedging is .... optimal hedging (or optimal reinsurance).
  - MKT(Y), the optimal g(Y), is the best hedge of the total P&L f(X, Y) using only market risk instruments.
  - INS(X), the optimal h(X), is the best reinsurance of the total P&L f(X, Y) using only reinsurance contracts not mentioning market risk.
  - RES(X, Y) is the remaining basis risk.



#### Concrete implementation: Variance hedging

- Some specifications are required to turn split by hedging into a practical approach
  - What is the universe of permitted hedges or reinsurance contracts?
  - What is the metric to determine "optimal"?
  - How can these be calculated in practice?
- Metric: minimal variance (least squares)
  - Optimal solutions are conditional expectations, i.e. the mathematics is sound and well understood.
- Permitted instruments/pure models
  - Choice depends on *f* and practical considerations
  - Typically parametric families (see next section)
- Practical calculations
  - Least squares is easy using regression techniques
  - Big advantage: Just a single model run required no matter how many risk factors there are in the split.

#### Does the method make a difference?



- It is not difficult to test typical functions over a range of relevant distributional assumptions and compare the results of the various splitting methods.
- Some observations for  $f(X, Y) = X \cdot Y$ 
  - The residual term in the split freeze can be substantial (>20% of total capital) especially for correlated risk factors
  - For independent risks split freeze and variance hedging are exactly identical
  - For correlated risks they are different, differences can be 10% of total capital or more
  - One of the causes of differences is cross-hedging of correlated risk, which is ignored by the freeze approach
- Some observations for  $f(X, Y) = \max(X + Y c, 0)$ 
  - Behaviour for the freeze method depends strongly on interplay between deductible c and the frozen points  $x_0, y_0$ .
  - For low deductibles f is like X + Y and freeze and variance methods produce similar results.
  - For higher deductibles residual terms can get very large
  - Freeze for higher deductibles seems quite erratic (allocating 0% or 100%)
  - Differences between methods for high deductibles are huge



- Capital allocation for portfolios
- Capital allocation on risk factors
- Case study

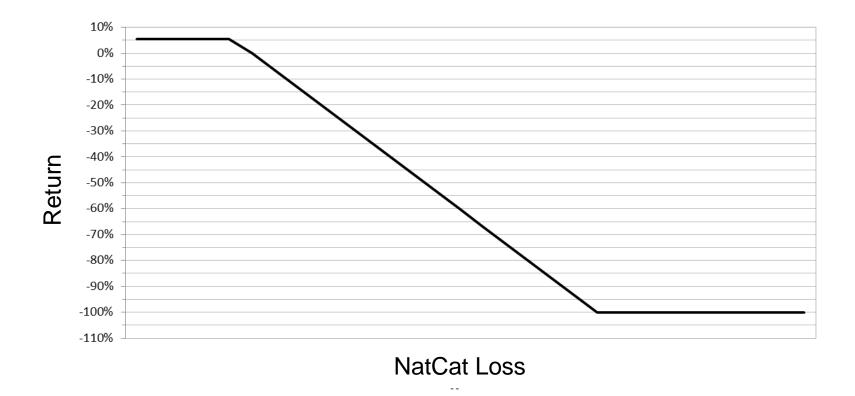
#### The cat bond index



- This case study is joint work with Jiven Gill from Schroders investment!
- Swiss Re Global Cat bond index:
  - A portfolio of cat bonds designed to reflect the returns of the catastrophe bond market
  - Swiss Re Capital Markets launched the Index in 2007
  - First total return index for the sector.
- The question: "What are the largest risks contributing to losses for the Swiss Re Cat Bond index?"



Pay-out profile of a Cat bond on some kind of loss from natural catastrophes





- Cat Bond payoffs can depend on more than one type of natural disaster (peril)
  - Return f(x,y,z) might depend on x: California earthquake losses, y: Florida Hurricane losses, z : European windstorm losses
  - Depending on the functional form f(.), cat bond can be triggered due to losses from only one of the perils or from a combination of them.
  - Over 40% of the cat bonds in the Swiss Re Index are multi-peril bonds.
- The answer in four steps:
  - Step 1: Find "pure risk" functions to describe cat bonds returns
  - Step 2: Split each individual cat bond into a sum of "pure risk" functions
  - Step 3: Define the cat bond index as the weighted sum of the individual cat bonds "pure risk" functions
  - Step 4: Use Euler allocation of Expected Shortfall



Parametric families of simple single peril instruments ("calls") are the building blocks of the pure risk functions:

 $g_i(X) = \max(X - c_i, 0)$  X: denotes industry losses due a single peril such as industry loss from Florida Tropical Cyclone  $c_i$ : deductible or attachment level of instrument *i* 

The pure risk functions are constructed from linear combinations fitted by ordinary least squares

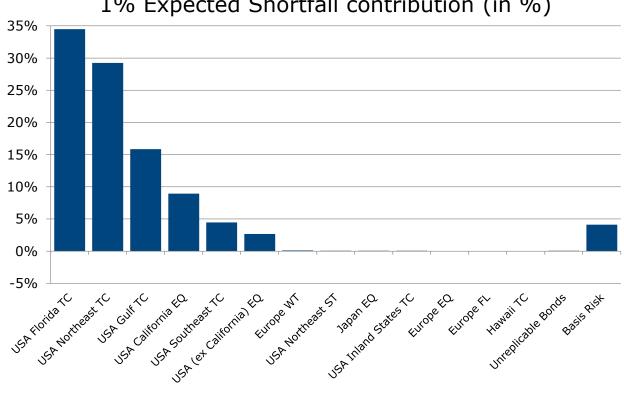
$$d_X(X) = \sum_{i=1}^{N} \beta_i * \max(X - c_i, 0)$$

- There are pure risk functions for all perils/regions to replicate all bonds  $f(X, Y, Z, ...) = d_X(X) + d_Y(Y) + d_Z(Z) + \dots + RES(X, Y, Z, ...)$
- Industry losses per perils and regions for calibration were extracted from AIR Catrader®

#### Allocation of Expected Shortfall



- A model of "pure" risk functions which adds up to 100%
- Each individual risk factor in the model has a business and economical meaning.

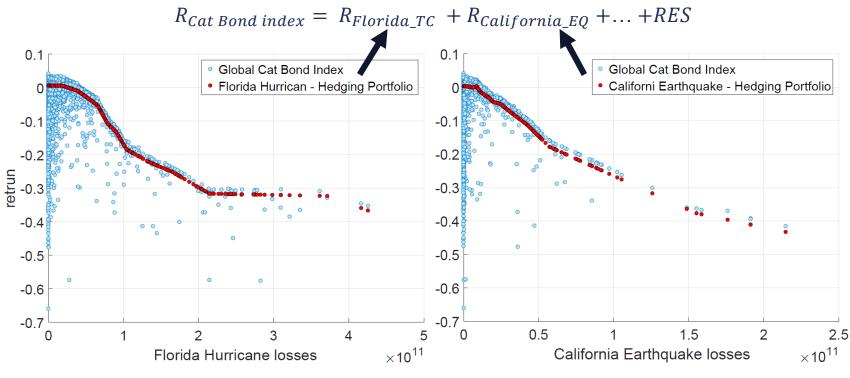


1% Expected Shortfall contribution (in %)



### Cat Bond index as sum of pure risk functions

The decomposition allows analysis beyond loss allocation

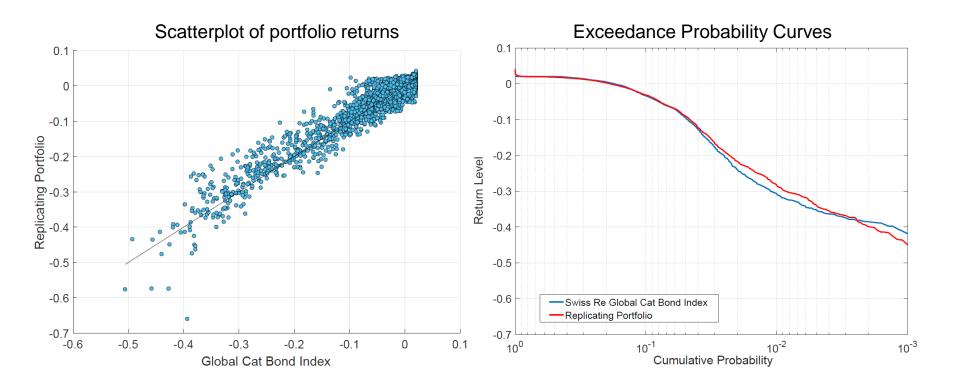


Red points are the pure risk functions

#### The Cat Bond index decomposed



- Overall fit is reasonably well even though there are two sources of error:
  - Errors due to the payoff function:  $f(x, y) \neq f_1(x) + f_2(y)$
  - Errors due to risk factors: The pure risk instruments are based on *industry losses*, while bonds might insure company specific portfolios or have parametric triggers.



#### Further reading



- Find below some papers on the topic. But be warned: The literature is (still) quite technical!
- "Decomposing life insurance liabilities into risk factors" (2015) Schilling, K., Bauer, D., Christiansen, M., Kling, A., <a href="https://www.uni-ulm.de/fileadmin/website\_uni\_ulm/mawi2/dokumente/preprint-server/2016/2016">https://www.uni-ulm.de/fileadmin/website\_uni\_ulm/mawi2/dokumente/preprint-server/2016/2016</a> - 03.pdf
- "Risk Capital Allocation and Risk Quantification in Insurance Companies" (2012)
   Ugur Karabey, <a href="http://hdl.handle.net/10399/2566">http://hdl.handle.net/10399/2566</a>
- "Risk factor contributions in portfolio credit risk models" (2010)
   Dan Rosen, David Saunders,

https://www.researchgate.net/publication/222695088\_Risk\_factor\_contributions\_in\_portfolio\_credit\_risk\_models

- "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle" (2008)
   Dirk Tasche, <a href="https://arxiv.org/abs/0708.2542">https://arxiv.org/abs/0708.2542</a>
- "Relative importance of risk sources in insurance systems" (1998) North American Actuarial Journal, Volume 2, Issue 2
   Edward Frees, <a href="http://dx.doi.org/10.1080/10920277.1998.10595694">http://dx.doi.org/10.1080/10920277.1998.10595694</a>



■ If you know of other ways to split or – even better – a new way to allocate, let me know!

Guido Grützner guido.gruetzner@quantakt.com